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LE’ITER TO THE EDITOR 

Phase diagram, critical properties and dimensional effects 
of the kinetic gelation model 

Naeem Jan, Turab Lookman and D L Hunter 
Theoretical Physics Institute, St Francis Xavier University, Antigonish, Nova Scotia, 
Canada, B2G 1CO 

Received 26 September 1983 

Abstract. We simulate the formation of a gel from a mixture of bifunctional and tetrafunc- 
tional monomers which may form bonds with the help of initiators on the triangular lattice. 
Our Monte Carlo results for the average-weight degree of polymerisation exponent, y, 
substantiate the conclusion that this model has distinct critical properties from other models 
of branched polymers. We observe a crossover to normal bond percolation as the concentra- 
tion of initiators is increased. However, the cluster number ratio appears to be a universal 
quantity. We offer an explanation for the differences in phase diagrams of the two- and 
three-dimensional systems in terms of restricted random walkers. 

Recently, a new model was proposed to simulate the growth of a strong gel in which 
covalent bonds were formed between monomers through the presence of free radicals 
or initiators (Manneville and de Seze 1981). This model, which is referred to as kinetic 
gelation through additive copolyprisation, was shown to be in a different universality 
class from that of random percolation (Herrmann eta1 1982), primarily on the evidence 
of the critical amplitude ratio. A brief description of the model is given below but the 
interested reader should consult Herrmann e? a1 (1983) for more details and Bansil 
et a1 (1983) for its chemical justification and limitations. Tetrafunctional or  bifunctional 
monomers are placed at each lattice site (the numerical results presented here are for 
the two-dimensional ( 2 ~ )  triangular lattice) and a relatively small number of initiators 
are sprinkled on randomly selected lattice sites. The tetrafunctional monomers can 
form at most four bonds with their nearest neighbours whilst the bifunctional monomers 
can form at most two. We allow the formation of multiple bonds between nearest 
neighbours. An active initiator and a nearest neighbour of the site on which the 
initiator resides are selected at random. If the monomers at these selected sites are 
not saturated, a bond is formed and the initiator moves to the nearest neighbour, but 
if either monomer is saturated, growth of the cluster is not possible at that instant and 
the initiator does not move. Initiators may be deactivated by annihilation (two found 
at the same site), trapping (the initiator surrounded by saturated monomers) or 
poisoning (the monomer on the site of the initiator is saturated). Clusters are formed 
by the movement of the initiators which may be considered as restricted random 
walkers (RRW). 

The critical properties of the 3~ cubic lattice were determined by Herrmann e? a1 
(1982) who found that R, the critical amplitude ratio of the weight-average degree of 
polymerisation (‘susceptibility’), is approximately 3 for a concentration of initiators, 
C,, of 0.003. This ratio is approximately 10 for random percolation (Stauffer e? al 
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1982) and 1 for the classical Flory-Stockmayer theory (Flory 1953). Thus this model 
is in a distinct universality class as the critical amplitude ratio is expected to be a 
universal quantity. However, the ‘susceptibility’ exponent, y, was found to be indistin- 
guishable from that of random percolation. Rushton er nl (1983) simulated the model 
on the 2~ square lattice and reported values of 3.8k0.5 for 7 and 140*45 for R 
from an analysis of their Monte Carlo data, thus further substantiating the conclusion 
reached by Herrmann er a1 (1982) that this model is distinct from other models of 
branched polymers. Jan et a1 (1983) have shown that the cluster distribution is not 
a monotonically decreasing function of cluster size as it is in percolation, thereby 
shedding some light on why this model may be in a different universality class. In this 
letter we investigate the variation of the exponent, y, and the cluster ratio number 
with CL and offer an explanation for the strong dimensional effects observed in the 
phase diagrams. 

The phase diagram of the variation of pc,  the bond fraction at which the sol-gel 
transition occurs, with C, is shown in figure 1. The concentration of tetrafunctional 
monomers, C,, is 1 and we observe that the infinite or spanning cluster is not found 
for values of C, less than 0.006. pc is determined from the maximum value of the 
‘susceptibility’ and varies from 0.192 for C1 equal to 0.006 to 0.280 at C, equal to 
0.06 but shows smaller increases for larger values of C,. The corresponding 3~ phase 
diagram (Herrmann et a1 1983) shows that the spanning cluster is formed for much 
smaller values of C,, and in addition pc is smaller for a given value of C,, e.g. at 
C,=O.Ol, pc is -0.11 whilst the corresponding 2~ value is -0.21. The coordination 
number in both cases is 6. We sketch in figure 2 the variation of pc with varying 
concentration of bifunctional monomers ( c b )  for the 2~ and 3~ systems and again 
observe rather strong dimensional effects. These results may be understood by assuming 
properties for the RRW compatible with the known properties of a random walker in 
2~ and 3 ~ .  In the limit of infinite functionality the RRW becomes a random walker. 

A random walker returns with certainty to the origin in 2~ but has a finite probability 
of not returning in 3 ~ .  We assume, and this is substantiated by our numerical work, 
that for a given number of steps a RRW will be nearer the origin for a 2~ walk than 
for the 3~ walk. For a given number of steps the spatial extent of a cluster will be 
greater in 3~ and furthermore, trapping is enhanced in 2~ where there is a greater 
tendency for the RRW ta  return to previously visited sites. The growth of a cluster is 
localised to the vicinity of the initiator; thus a trapped initiator or a cluster of small 
spatial extent has a much smaller probability to coalesce with others to form a spanning 
cluster, and these properties are reflected by the lower value of pc for the 3~ systems 
when compared with the equivalent 2~ system for a given value of C,. A saturated 
monomer may be called upon to perform two functions: (i) to limit the paths available 
to the initiator (a blocker); (ii) trapping of the initiator. The addition of bifunctional 
monomers allows for the easy formation of saturated monomers and in 2~ these 
saturated monomers primarily function in the role of blockers. Again, numerical 
results show that the average radius of gyration of a cluster for fixed p is 1.33 larger 
for Cb equal to 0.2 than it is for c b  equal to 0. As we have already noted, large 
clusters have a greater probability to coalesce, thus a larger portion of the bonds 
formed contribute to the spanning cluster, hence the decrease in pc with increase of 
c b  for the 2~ system. At c b  equal to 0.5 the competition from trapping is too great 
and the growth process is frustrated before the gel transition. The RRW is not severely 
hampered by blockers in 3~ (the random walker has a finite probability of diffusing 
away), and as such there is small change in pc for C, in the range from 0 to 0.5. 
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Figure 1. The variation of pc, the critical bond concentration, with C,, concentration of 
initiators, for the 2D triangular lattice (a )  and 3D cubic lattice ( b )  (from Herrmann et a1 
(1983)). pt is the concentration at which complete trapping occurs. 

However, large values of C, lead to trapping which in turn implies an increase in pc 
as a larger fraction of bonds have to be added before the spanning cluster is formed. 

Restricted valence percolation is recovered in the limit of large C, for in this region 
all the sites have the potential to form bonds. The critical properties are, therefore, 
expected to cross over from kinetic gelation to those of restricted valence percolation 
as C, is increased. We have calculated the 'cluster number ratio', the ratio of s-clusters 
at pc to the number of s-clusters at the concentration of bonds pmax(s) where the 
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Figure 2. The variation of pc  with varying concentration of tetrafunctional monomers. 
The phase diagram for the 2D system is from Jan et a1 (1983) whilst the 3~ diagram is 
from Herrmann et a/  (1983). 

number of s-clusters is a maximum, as a function of C,. The results, shown in table 
1, suggest that this is a universal quantity (i.e. independent of C,) and may have the 
same value as random percolation (-5; Jan and Stauffer (1982)). Preliminary analysis 
of the susceptibility exponent y on the 450 X 450 triangular lattice indicates that there 
is a strong dependence on CI for values of C, up to 0.15. In fact, we see y decrease 
from approximately 5 for the two small values investigated to approximately 2.5 at 
C, = 0.15. The actual values of y observed here are less important than the variation 
itself and the fact that for a relatively low concentration of initiators y tends to the 
random percolation value. A more detailed investigation of the critical exponents 
involving finite size scaling and renormalisation group analysis is in progress to ascertain 
whether the exponents are continuously varying with C, or if there is a sharp crossover 
from kinetic gelation to restricted valence percolation. This question cannot be 
answered with our present work. 

To summarise, we have determined the phase diagram for the kinetic gelation 
model ( pc against C, for C, = 1) and have interpreted this phase diagram and also the 
phase diagram ( pc against Cb/( C, + CJ) for the 2~ and 3~ systems in terms of restricted 
random walkers. The ‘susceptibility’ exponent confirms that this model is distinct from 
random percolation and the evidence strongly suggests that there is a crossover from 
kinetic gelation to random percolation as CI is increased. However, the cluster number 

Table 1. The variation of the cluster number ratio (the number of s-clusters at that 
concentration pmax(s) where the number of s-clusters is a maximum to the number of 
s-clusters a t  pc for a fixed s) with C,. Note the strong variation for small values of initiators. 
The random bond percolation value is approximately 5. 

Concentration of Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 
initiators C, ~ 1 6 - 3 1  s 32-63 ~ 6 4 - 1 2 7  s 128-255 ~ 2 5 6 - 5 1 2  

0.0075 23 15 7 5 4 
0.01 23 12 6 4 3 
0.075. 7 5 5 5 3 
0.10 7 6 5 4 4 
0.15 5 5 6 4 3 
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Figure 3. The variation of 7, the average-weight degree of polymerisation exponent, as a 
function of C,. The straight broken line represents the random bond percolation value, 
the broken curve is a guide to the eye. The error bars are obtained from an analysis of 
the Monte Carlo data and do not take into account systematic deviations like finite size 
effects. 

ratio appears to be a universal quantity, i.e. independent of C,, and our numerical 
results do not rule out that this quantity may have the same value as that of random 
percolation. 
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